
The Visual Computer
https://doi.org/10.1007/s00371-018-01625-y

ORIG INAL ART ICLE

Building hierarchical structures for 3D scenes with repeated elements

Xi Zhao1 · Zhenqiang Su2 · Taku Komura3 · Xinyu Yang1

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We propose a novel hierarchy construction algorithm for 3D scenes with repeated elements, such as classrooms with multiple
desk–chair pairs. Most existing algorithms focus on scenes such as bedrooms or living rooms, which rarely contain repeated
patterns. Consequently, such methods may not recognize repeated patterns, which are vital for understanding the structure and
context of scenes such as classrooms. Therefore, we propose a new global optimization algorithm for recognizing repeated
patterns and building hierarchical structures based on repeated patterns. First, we find a repeated template by calculating
the coverage ratios and frequencies of many substructures in a scene. Once the repeated template has been determined, a
minimum cost maximum flow problem can be solved to find all instances (repetitions) of it in the scene and then group objects
accordingly. Second, we group objects in the region outside the repeated elements according to their adjacency. Finally, based
on these two sets of results, we build the hierarchy of the entire scene. We test this hierarchy construction algorithm on the
Princeton and SceneNN databases and show that our algorithm can correctly find repeated patterns and construct a hierarchy
that is more similar to the ground truth than the results of previous methods.

Keywords 3D scene · Scene analysis · Hierarchy · Repeated patterns

1 Introduction

Currently, 3D scenes consisting of many realistic models are
commonly encountered. Enabling a computer to understand
such data in a way that is consistent with human perception
is essential for applications such as context-based retrieval,
3D scene synthesis, somatic games, and virtual reality. Hier-
archical structures, which define different levels of local
regions and their relationships, are excellent tools for repre-
senting the context of 3D scenes. Such hierarchical structures
are widely used for the analysis, editing and synthesis of 3D
models and scenes.
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Representing 3D scenes with hierarchical structures is
not a trivial problem. The challenge lies in the multiple
factors that need to be consideredwhen building such a struc-
ture. We need to consider not only the geometry of each
individual object but also the contextual information of the
scene, such as the spatial relationships between individual
objects or groups of objects. Meanwhile, we also need to
consider the semantic categories of the individual objects,
which can be either directly provided or determined through
analysis. Furthermore, it is useful to encode the higher-level
features of a scene, such as repeated patterns, into the hier-
archy because such repeated parts may all perform the same
function and thus should be logically grouped together or
similarly processed. Therefore, capturing such features can
greatly help in understanding the structure and content of 3D
scenes.

Existing methods for extracting the structure of a scene
rely on either learning-basedmethods that learn fromground-
truth structures or analytical methods that organize a scene
based on the spatial relationships between different scene
elements. A learning-based method, such as that of Liu et
al. [16], can learn from consistent hierarchies and labels and
then use the learned grammar to parse new scenes. In an ana-
lyticalmethod, such as that of [28], the affinity between scene
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elements is first measured based on the interaction bisector
surface (IBS), and then, the elements are gradually merged
to build the hierarchy. Although these methods can compute
plausible structures for scenes such as bedrooms, they are
not designed to find repeated patterns. Consequently, they
are not guaranteed to find the repeated patterns in a scene,
thus limiting the accuracy of the constructed hierarchical rep-
resentation.

In this paper, we propose a method of building hierarchi-
cal structures for 3D scenes with repeated patterns. There are
two key challenges that need to be addressed: (1) checking
whether a repeated pattern exists and generating the corre-
sponding repeated template and (2) finding the instances of
the repeated template, i.e., the repetitions of the template
in the scene, and then building the hierarchy. To address
these problems, we first list all possible templates for a
scene based on a graph of the scene, and we then iden-
tify the repeated template by considering the coverage ratio
and number of repetitions of each candidate. If a repeated
template exists, we find all instances of that repeated tem-
plate in the scene by solving a minimum cost maximum
flow problem. Subsequently, we construct groups of objects
in the regions both with and without the repeated pattern
and use the results to build the final structure of the whole
scene.

The main contribution of our work is that we propose a
novel method of finding repeated patterns in 3D scenes that
takes advantage of the strengths of both the IBS represen-
tation and the Ford–Fulkerson method. By using the IBS,
we can effectively find the repeated template by capturing
the immediate neighbors of each object. With other meth-
ods, such as a distance-based relationship representation, we
might become trapped in a state with a massive number of
neighbors and suffer from difficulty finding a suitable thresh-
old with which to define a neighborhood. By constructing a
flow network, we convert the problem of finding repeated
instances into a minimum cost maximum flow problem. By
assigning suitable capacities and costs to the network edges,
our method elegantly finds the optimal solution for form-
ing object groups according to the template. This design
avoids the problem of encoding semantic labels into mea-
sures of the distances between objects, which is necessary
when directly applying a clustering method to a scene graph.
The resulting hierarchies that include repeated patterns can
be potentially used for scene synthesis, scene completion,
and scene editing. We quantitatively evaluate the proposed
method for comparison with state-of-the-art algorithms. We
show that our algorithm can produce structures that are more
consistent with the ground truth than those generated with
previous methods are. For the SceneNN database which has
no ground truth, we conduct a user study to evaluate the hier-
archies produced by our method.

2 Related work

Our paper is most closely related to work on building
structural representations for 3D scenes. A structural rep-
resentation for a 3D scene can be a flat graph or a tree
structure. Such representations can be used for scene display
and reasoning [19,22], scene analysis [9,11,16,28], scene
comparison [6,21,25], and scene synthesis [27]. Among the
related research on this topic, we are most interested in meth-
ods of building hierarchical representations for scenes; such
methods can be either learning-based methods, such as that
of [16], or analytical methods, such as those of [28] and
[9]. Liu et al. [16] learn a probabilistic hierarchical gram-
mar from manually labeled scene graphs and then use the
learned grammar to parse new scenes. Their method not
only builds hierarchies for scenes but also tags scene ele-
ments at different levels during the parsing process. Zhao et
al. [28] build scene hierarchies based on the spatial relation-
ships between scene elements. After analyzing the affinities
between objects, they gradually merge objects into groups
according to these affinities until all elements have been com-
bined into one group. Hu et al. [9] build another type of tree
structure, in which the root of the tree is the host object in
the scene. The advantage of their method is that the relation-
ships between the host object and its neighbors are clustered
and reorganized such that the resulting structure is not sen-
sitive to the number of objects in the scene. However, none
of these methods explicitly considers the repeated patterns
in scenes, and consequently, they are not guaranteed to find
such repeated patterns.

Structure-aware shape analysis, which has attracted con-
siderable attention, is also related to our work. Although 3D
scenes are different from individual 3D objects, the related
research on shape analysis can inspire our work in two ways.
On the one hand, it has been proven that a hierarchical/tree
structure is quite useful for shape analysis [8,23,24] and syn-
thesis [2,12,13]. For example, Wang et al. [24] detect the
symmetries in an object and construct a hierarchy based
on these symmetries. The hierarchy is recursively generated
based on handcrafted rules. To synthesize various 3D mod-
els, Alhashim et al. [2] first build graphs for two given objects
and then blend the two graphs both topologically and geo-
metrically based on the correspondence between them. Li
et al. [13] synthesize new structures by using a recursive
neural network. These works show that a structure-aware
representation is an effective means of encoding both the
spatial relationships and the priorities between relationships
of different object parts. On the other hand, it is believed that
repeated patterns are essential structural features of a shape
[18]. Bokeloh et al. [3] have proposed a method of inverse
procedural modeling. They examine the partial symmetry
structures of 3Dmodels and find the parts that maintain local
similarity. Various shapes can be produced by repeating the
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Fig. 1 Overview of our method. Step 1: An input 3D scene (a) is split
into the repeating region (b) and the nonrepeating region (e). Step 2: A
flow network (c) is built based on (b). Step 3: We solve a minimum cost
maximum flow problem to obtain the segmented scene (d). Step 4: A
graph (f) is created for the rest of the scene (e). Step 5: Segmentation

results (g) are computed using the method of [28]. Step 6: The two sets
of segmentation results are merged to form (h). Step 7: The final hier-
archy (i) is constructed by using grouping (h) as the second level and
applying optional further grouping steps

replacement and insertion operations. Despite the difference
in scope between shapes and scenes, we find that the concept
of repeated patterns is also essential for capturing the content
of 3D scenes.

Finding periodic or repeated patterns in 2D images is
a popular research topic since it is quite useful for image
foreground segmentation [10], image analysis [1,14], image
editing [4] and image synthesis [26]. Ahuja et al. [1] find the
repeated elements in an image by building a tree structure
for the image based on multiscale segmentation. Also using
hierarchical segmentation, Cheng et al. [4] have proposed a
boundary band method for detecting repeated patterns and
further finding the correspondence between each detected
region and a user-specified template. Huang et al. [10] find
repeated scene elements by solving amax-flowmin-cut prob-
lem for a graph built from a 2D image. Repeated patterns
also occur in 3D models. Liu et al. [15] have proposed a
method of detecting repeated templates from periodic reliefs
of 3Dmodels. Their system first initializes the cutting planes
semiautomatically and then refines the cutting locations via
surface registration. Gal et al. [7] detect subpart similar-
ity in 3D models by first finding feature points on a 3D
surface and then applying a geometric hashing method for
partial matching with a repeated template. Without any prior
knowledge, the method presented in [15], which is based on
a transformation space voting scheme, can detect complex
regular structures in noisy or even incomplete geometries.
Our method is similar to these works in the sense that we
also need to find instances of templates with certain types
of objects, numbers of objects, and spatial relationships
between objects.

3 Ourmethod

The pipeline of our method is summarized in Fig. 1. Given
an input 3D scene, we first split the scene into the repeating
region and the nonrepeating region (step 1) and then segment
the repeating region by solving a minimum cost maximum
flow problem (steps 2 and 3). For the remainder of the scene,
we apply the method proposed by Zhao et al. [28] to group
the objects (steps 4 and 5). The final scene structure is built
by combining the two sets of results (step 6) and applying
optional further analysis (step 7).

3.1 Terms

To describe ourmethodmore clearly, we define the following
terms:

– 3D scene: In this paper, we consider 3D scene data that
consist of complete 3Dobjectmodels.We assume that the
scene geometry is well segmented into different objects
and that each of the objects has a label that indicates its
type, such as “desk” or “chair”.

– Relation matrix M : For a 3D scene with N objects, we
compute an N × N matrix M . Element M(i, j) of the
matrix is a value that represents the affinity between the
ith and jth objects. If M(i, j) = 0, it means that the two
objects have no direct relationship and are not neighbors.

– Scene graph G: We also build a flat graph G for the 3D
scene. The nodes of G represent the individual objects
in the scene, and each node is labeled with the corre-
sponding object type. Each edge in G corresponds to a
nonzero element of the relation matrix. If M(i, j) �= 0,
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then nodes i and j are connected by an edgewith aweight
of M(i, j).

– Template T : We use a template T to represent a structure
consisting of certain types of objects in a certain relation-
ship that appears many times in the scene.

– Repeated template candidate Tc: Each repeated template
candidate Tc is the structure of a subgraph of G, which
may be repeated many times in the scene. These candi-
dates are used to find the repeated template for the scene.

3.2 Detection of the repeated pattern (steps 2 and 3)

Detecting the repeated pattern in a scene is the core of our
algorithm. We first identify the repeated template through a
heuristic search and then detect the instances of that repeated
template using a global optimization method. Below, we
explain these two steps in detail.

3.2.1 Identification of the repeated template

Given a 3D scene with N objects, we first compute its rela-
tion matrix M . We assume that the scene geometry is well
segmented into individual objects and compute the affin-
ity between objects i and j , denoted by M(i, j), using the
method proposed in [28]. This method is based on the IBS,
which is a set of points that are equidistant from at least
two objects in the scene. It is designed to represent the spa-
tial relationships between the objects composing the scene.
By considering the distance and direction features of the
IBS region corresponding to each pair of objects, we can
compute the M(i, j) value to represent how strong the rela-
tionship between those two objects is. When the two objects
are closer and more directly facing each other, the corre-
sponding M(i, j) is larger. If there is no IBS point between
them, which means that they are not immediate neighbors,
the corresponding M(i, j) is zero. The relation matrix for
the example scene considered here is visualized in Fig. 3.

With the relation matrix M , we then build the scene graph
G and find all repeated template candidates. To find the
repeated template candidates, we start from each node vi
of G and build a subgraph Gvi that consists of the node vi ,
all one-step neighbor nodes of vi , and the edges between
them (Fig. 2a). Next, we list all possible subgraphs of Gvi .
We define a subgraph as “valid” when it satisfies the fol-
lowing three conditions: (1) it contains at least two nodes,
(2) it contains at least two types of nodes, and (3) it con-
tains at least one node type that appears only once. These
conditions ensure that no valid subgraph will itself contain a
repeated pattern. An example that does not satisfy condition
(2) is shown in the upper image in Fig. 2c; this subgraph con-
sists of two desks. Another invalid example, which violates
condition (3), is shown in the bottom image in Fig. 2c. Two

Fig. 2 a The blue desk and its one-step neighbors. b Examples of the
corresponding candidate templates (valid subgraphs). c Examples of
invalid subgraphs that cannot be used as candidate templates

Fig. 3 Visualization of the relation matrix for the example scene in
Fig. 2a

examples of valid subgraphs are shown in Fig. 2b. We refer
to all valid subgraphs as the candidate repeated templates Tc.

Next, we identify the repeated template T from among
all candidates Tc. For each candidate template Tc, we first
find all nonoverlapping instances of Tc in the scene. Here, an
instance is a subgraph ofG that is a repetition of the template.
More specifically, we consider a subgraph of G to be a rep-
etition of Tc when it has the same topology and node labels
as those of Tc. The coverage of a candidate template is then
defined as the union of all nonoverlapping instances of that
template. We compute the coverage ratio as the number of
objects in the coverage divided by the total number of objects
N . The candidatewith the largest coverage ratio is considered
to be the repeated template for the scene. If two candidate
templates have the same coverage ratio, we further compute
the frequency, which is the number of instances of the tem-
plate within the coverage. We then choose the template with
the higher frequency as the repeated template.By considering
both the coverage and frequency, our method selects themin-
imum repeated template whose instances cover the largest
area in the scene. If more than one candidate template has
the same coverage ratio and frequency, we randomly select
one of these candidates as the final template. The repeated
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template for the example scene is “desk–chair–chair”. This
template’s coverage is 9/15 = 0.6, and its frequency is 3.

Finding all nonoverlapping instances of a candidate tem-
plate is not straightforward. A candidate template needs to
have the largest number of nonoverlapping instances to be
chosen as the final template. However, finding all nonover-
lapping instances is equivalent to finding the repeated pattern.
Therefore, we use a heuristic method to estimate the largest
number of nonoverlapping instances as follows. We place all
valid subgraphs in a queue and consider each subgraph in
the order of the queue. If the current subgraph is an instance
of the candidate template that does not overlap with existing
instances, we add it to the instance list; if it does overlap with
the existing instances, then we ignore it. Of course, the order
of the queue influences the results. Therefore, we shuffle the
queuemany times and choose the best result. The assumption
underlying this approach is that if the number of permuta-
tions of the queue is sufficiently large, then the considered
permutations should include the one with the best order that
finds the largest number of nonoverlapping instances. In our
experiment, we empirically set the number of permutations
to 200.

3.2.2 Detection of repeated instances

Given the identified repeated template, we next need to group
the objects in the scene according to the repeated template.
For example, because “desk–chair–chair” is the repeated
template for the example scene, we need to decide which
chair and desk models should be assigned to the same group.
To compute a globally optimal solution from the many pos-
sible groupings, we propose a novel method based on the
minimum cost maximum flow strategy.

We build a single-source, single-sink flow network for
the scene. As an example, for the scene shown in Fig. 1,
the corresponding flow network is shown in Fig. 4. Here,
the source node “s” has only outgoing flows, and the sink
node “t” has only incoming flows. First, we choose a “host
object” for the repeated pattern, whichmust appear only once
in the repeated template. For example, in the “desk–chair–
chair” pattern, the desk is the host object. All objects with
the desk label are placed in the first layer of the network and
are directly connected to the source node. Then, the objects
of the remaining types in the repeated template form the
second layer of the network. The edges between the first and
second layers are determined by the relationships between
the objects in the scene graph G. An edge exists between
object i in the first layer and object j in the second layer only
if there is an edge between them in G. Finally, we connect
all second-layer objects to the sink node.

The capacity of each edge in the flow network is defined
as follows. The capacity of each edge from the source node
to a host object is set to n, where n is the number of objects

Fig. 4 Flow network for the example scene and the capacities and costs
of the edges. For each edge, the red number before the comma is the
capacity value, and the green number after the comma is the cost value.
Desks are in the first layer, and chairs are in the second layer

Fig. 5 Two segments corresponding to the maximum flow. When the
cost is not considered, both a and b are optimal splits of the repeated
pattern, although a is more reasonable

connected to the host object in the repeated template. For
example, in the “desk–chair–chair” pattern, one desk is con-
nected to two chairs, so the capacity of each edge from the
source node to a desk node is 2. The capacity of each edge
connecting a host-type object to any other object is set to 1.
The capacity of each edge connecting a second-layer object
to the sink node is also set to 1.With this flownetwork design,
we attempt to connect each host object to a certain number
of other objects in the next layer.

We also need to provide the networkwith the relationships
between objects. Simply considering the object type and the
number of objects connected to each host object is not enough
because the maximum flow of such a network may not be
unique. For example, in Fig. 5, the splits shown in (a) and (b)
both correspond to the same flow. In other words, regardless
of whether the pink chair is associated with the green desk
in front of it or the orange desk behind it, the flow does not
change, although the pink chair is closer to the green desk
and also semantically belongs to it. To solve this problem,
we add a cost to each edge in the flow network to represent
the cost of each unit of flow. We compute the costs of the
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edges between layers of the flow network with the following
equation:

C(i, j) = e−M(i, j) (1)

where M is the relation matrix for the scene computed as
described in Sect. 3.2.1 and i and j are object IDs. Because
M(i, j) is a number greater than 0, the range of C(i, j)
is (0, 1]. A larger M(i, j), which indicates a stronger spa-
tial relationship between objects i and j , corresponds to a
smaller cost in the flow network. Edges with smaller costs
are more likely to be selected for the optimized flow solu-
tion. The costs of all edges connected to the source or sink are
set to 1. The cost setting for the example scene is shown in
Fig. 4.

We next apply the Ford–Fulkerson method [5] to find the
minimum cost maximum flow solution for the flow network,
with the aim of finding the flow with the lowest cost among
all maximum flow solutions. Given a flow network with a
source node and a sink node and the capacity and cost of
each edge, this method proceeds as follows: After finding a
minimumcost path byFloyd–Warshallmethod,weadd aflow
to each edge on this path with the bottleneck capacity and
then update the flow and cost on each edge. This process is
repeated until we cannot find any valid augmenting path. The
detailed algorithm is presented as Algorithm 1. The Floyd–
Warshall method works only for graphs with no negative
cycles. We prove our flow networks are such type of graphs
in theAppendix. The resultingminimum costmaximumflow
solution for the example network in Fig. 4 is shown in Fig. 6.

Finally, we segment the scene based on the resulting flow
solution; objects are grouped if there is a flow between them
in the obtained solution. The resulting segmentation of the
example scene is shown in Fig. 5a. Note that although we
aim to find as many repeated instances of the template, i.e.,
subgraphs that have the same structure as the template, as
possible, theremight be someobjects remaining that can form

Fig. 6 The minimum cost maximum flow solution for the flow network
of the example scene

Data: A flow network F with capacity matrix c, cost matrix a,
source node s, and sink node t

Result: A minimum cost maximum flow solution f
1. f (u, v) = 0, w(u, v) = a(u, v) for all edges;
2. Find an augmenting path p by Floyd–Warshall (F);
3. while p exists do

Find the bottleneck capacity: cadd (p) = min{c(u, v)};
for each edge (u, v) ∈ p do

if edge (u, v) is forward then
if cadd (p) < c(u, v) then

f (u, v) = f (u, v) + cadd (p);
else

/* if cadd (p) = c(u, v) */
f (u, v) = f (u, v) + cadd (p);
w(u, v) = MAX ;
w(v, u) = −a(u, v);

end
else

/* if the edge is backward */
if cadd (p) < c(u, v) then

f (v, u) = f (v, u) − cadd (p);
w(u, v) = −a(v, u);
w(v, u) = a(v, u);

else
/* if cadd (p) = c(u, v) */
f (v, u) = f (v, u) − cadd (p);
w(u, v) = MAX ;
w(v, u) = a(v, u);

end
end
c(u, v) = c(u, v) − cadd (p);
c(v, u) = c(v, u) + cadd (p);

end
end
return f;

Algorithm 1: The Ford–Fulkerson method

only part of the template. For example, in the example scene,
based on theflowsolution, the orange desk has only one chair,
whichmeans that there is only 1 unit of flow originating from
the orange desk. There are similar cases for scenes such as
classroom 4 in Fig. 7c and the scene in Fig. 9, in which some
of the repeated instances are not identical to the template. In
Fig. 7c, somedesk–chair pairs are detectedwhen the template
is desk–chair–chair, and in Fig. 9, a single desk in the first
row is identified. Strictly speaking, these instances are not
repetitions of the template, but we have found that there is no
harm in forming groups for such instances in the hierarchy
becausemost of themmake sense (such as the desk–chair pair
in Fig. 7c). On the other hand, we can consider such instances
as irregular subregions of the scene and can complete them
if necessary.

3.3 Construction of the hierarchy

In this section, we describe the process of building the scene
hierarchy. In the lowest level (the first level) of the hierarchy,
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we assign each object to a single group. Then, in the second
level, we apply the method described in Sect. 3.2 to find
the repeated pattern and place the resulting segments in the
second level of the hierarchy. After that, we can either merge
all segments to the root or further group the segments until we
reach the root. The whole process is shown in Algorithm 2.

Data: A scene with n objects {o1, o2, . . . , on}, where each
object has a label {l1, l2, . . . , ln}

Result: A hierarchy H built for the whole scene
1. H = ∅;
2. Build the first level of the hierarchy:
Assign each single object to a group;
H = {{o1}, {o2}, . . . , {on}};
3. Build the second level of the hierarchy:
begin

Define the current level of grouping L = ∅;
(1) Split the scene into two parts, P1 and P2;

P1 = {op11 , op12 , . . . , op1n }, where the op1i are objects
whose labels appear only once in the whole scene;

P2 = {op21 , op22 , . . . , op2n }, where op2i /∈ P1;

(2) Find the repeated pattern in P2;
while T exists do

Build a network F for P2;
Apply Algorithm 1 to F to obtain the minimum cost
maximum flow solution f ;
Convert f into grouping gi ;
L = L

⋃
gi ;

P2 = P2 − Gi , where Gi is the set that contains all
objects in gi ;
Search for the template T in P2;

end

(3) Apply the method of [28] to P1 to obtain the grouping
gp1;
L = L

⋃
gp1;

Assign this grouping to the second level from the lowest;
H = H

⋃
L;

end

4. Further group the scene elements using the method of [28] or
some other method (optional);
H = H

⋃
L;

5. Merge all segments into one (the root R);
H = H

⋃
R;

return H;

Algorithm 2: Construction of the hierarchy

To apply the algorithm described in Sect. 3.2 more
robustly, we add two further processes when computing the
second level of grouping in the hierarchy. First, before find-
ing the repeated pattern, we split the scene into two parts:
the repeating region and the nonrepeating region. The non-
repeating region contains all objects that have a label that
appears only once in the scene, and the repeating region is
the remainder of the scene. The motivation for this process
is straightforward: if a given object type appears only once

in the scene, it cannot be part of the repeated pattern. By
removing such objects when computing the repeated pat-
tern, we can reduce the number of subgraphs to be analyzed
and identify the template more quickly. For the nonrepeat-
ing region, we apply the method of [28] to merge nearest
neighbors and add the resulting grouping to the second level
of the hierarchy, as well. Second, to consider multiple types
of templates, we apply the Ford–Fulkerson method multiple
times to find all different repeated patterns. Initially, we find
the instances for an identified template with Algorithm 1.
Then, the objects in these instances are removed, and the
algorithm is applied again to the remaining objects until no
more template instances can be found.

Once the second level of the hierarchy has been con-
structed, grouping methods such as hierarchical agglomer-
ative clustering (HAC) can be iteratively applied to further
merge the groups until the root is reached. This step is
optional; it ismainly useful for large-scale scenes that contain
multiple sections with different functions. In our experi-
ments, because the data we process mainly represent single
rooms, we skip this step and directly merge the second level
of the hierarchy to the root node.

4 Experiments

4.1 Database

We apply the proposed method to the Princeton scene
database [16]. We test and evaluate our algorithm on the 30
classroom scenes and 8 library scenes in this database. Each
of these scenes has amanually constructed ground-truth hier-
archy, which can be used for the evaluation of our method.
We do not use the bedroom scenes because there are few
repeated patterns in such scenes.

We also test our algorithm on the SceneNN database
[20], which contains different types of scenes with repeated
patterns, such as office, meeting room and canteen scenes.
Compared to the Princeton database, the SceneNN database
is noisy, and it is incomplete in both geometry and labeling.
All segments in a SceneNN scene are labeled with either
a semantic label such as “desk” or the meaningless label
“none”. To use these data, we extract the segments with
semantic labels and apply ourmethod only to these segments.
Inmost cases, segmentswithmeaningful shapes have seman-
tic labels. In our experiments, we ignore the segments that
are labeled as “floor” or “wall” when building the hierarchy
of the scenes.

4.2 Results

Results for scenes from the Princeton database are shown
in Fig. 7. From these results, we can see that our method
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Fig. 7 Original scenes (left) and resulting hierarchies obtained with
our method (right). a–d show results for classroom scenes, while e–g
show results for library scenes. Different background colors are used to
highlight patterns detected with different templates. Note that in c—the

second pattern with the light blue background, all the objects around the
two boards are labeled as “cabinet” in the Princeton database despite
their different geometry. So they are detected as repeated patterns

can correctly detect repeated patterns in the scenes and can
also successfully detect multiple repeated patterns in a scene
(Fig. 7c, e). Different background colors correspond to the
patterns detected with different templates. Some results for
SceneNN scenes are shown in Fig. 8a–d. Although the Sce-
neNN data are noisy and incomplete, our method can still

detect repeated patterns. In Fig. 8e, we show the hierarchy
obtained for a “musical chairs” game scene in which five
children will sit on four chairs. From the hierarchy, we can
pair four of the children with corresponding chairs and iden-
tify the child without a chair, who has a larger chance to fail.
We also show results for some other types of scenes, such
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Fig. 8 Original scenes (left) and resulting hierarchies obtained with our method (right). a–d show results for SceneNN scenes, while e–h show
results for other scenes. A light pink background is used to highlight the repeated patterns detected with our method

as a hospital ward (Fig. 8f) and dining tables with tableware
(Fig. 8g, h).

4.3 Evaluation on Princeton database

We evaluate the hierarchy results of the Princeton database
in two ways.

First, we evaluate the topological similarity between our
results and the ground truths using the γ value proposed in
[17], which is computed by comparing the merging orders of
the scene element pairs in two hierarchies. If objects a1 and
a2 are merged earlier than b1 and b2 in hierarchy h1 and a1

and a2 are alsomerged earlier than b1 and b2 in hierarchy h2,
then this is a consistent order (a good order). However, if a1
and a2 are merged later than b1 and b2 in hierarchy h2, this
is a reverse order (a bad order). Then, the evaluation value
γ , which considers the relative proportions of good orders
and bad orders, is used to describe the similarity. γ = 1
means that the proportion of goodorders is 1, i.e., themerging
order is the same for both hierarchies. γ = −1 means that
the proportion of bad orders is 1, i.e., the merging order is
completely different between the two hierarchies.

Second, we compare the repeated patterns represented in
the two hierarchies by the Rand index. Because single lev-
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els in the hierarchy can be regarded as clusterings of the
scene, and the Rand index is a standard measure that counts
the proportion of “agreements” between two clusterings. In
our experiments, we first extract the level Lg that contains
the repeated pattern in the ground-truth hierarchy and the
level Li that represents the repeated pattern in the identi-
fied hierarchy. Then, we count the agreements, which is the
number of objects pairs that are either in the same subset in
both Lg and Li or in different subsets in both Lg and Li .
Finally, the Rand index for Lg and Li is calculated by divid-
ing the agreements number by the total number of object
pairs.

We compare the proposed method with two alternative
methods:

– Learning The learning-based method proposed in [16] is
used to build the hierarchy.

– HAC TheHACmethod [28] is used to build the hierarchy.

The first alternative is a learning-based method that predicts
both the structure of a scene and the label of each subpart
of the scene. In this method, the scene is divided into small
pieces that are subparts of every individual object. Because
our method divides the scene only to the object level and
does not further divide a single object into smaller subparts,
when evaluating the results using the method of [16], we
compare the results of the learning-based method with the
ground truth only from the root level to the level of individual
objects. The second alternative method also uses a weight
matrix computed with the IBS approach, based on which the
HAC method is used to build the hierarchy.

We use the scenes and ground-truth hierarchies from the
Princeton database to perform the evaluation. We compute
both the γ value and the Rand index for each scene from the
database, and finally, we compute the average γ value and
the average Rand index. When computing the Rand index
results for the learning-based method and the HAC method,
because it is unknown which level in the generated hierarchy
best represents the repeated pattern, we compare the ground-
truth clustering Lg with each level in the hierarchy and select
the level with the maximum Rand index. By doing so, we
select the level that is most similar to Lg as the basis for our
evaluation.

The evaluation results are shown in Table 1. From the
results, we can see that our method produces a slightly
higher γ than the learning-based method does. This means
that the consistency in merging order between our results
and the ground truth is comparable to that of the learning-
based method. The HAC method achieves the lowest value
because it is based purely on geometry and does not con-
sider repeated patterns at all. In this method, a chair close to
a window might be grouped with the window rather than a
nearby desk, for example, leading to merging orders that are

Table 1 The average γ values and Rand index values for different
methods

Method γ value Rand index

Our method 0.8593 0.9883

Learning 0.8377 0.9832

HAC 0.4931 0.9221

The γ value is used to evaluate the merging orders of the generated
hierarchies, and the Rand index is used to evaluate the precision with
which repeated patterns are detected

the inverse of those in the ground truth. Consequently, the γ

value of this method is much lower than those of the other
methods.

The Rand index for our method is also the highest among
all methods. This means that our method detects repeated
patterns more precisely. To visually illustrate the advantages
of our method, we visualize one level of the hierarchy as
obtained with each of the different methods for an example
scene in Fig. 9. Figure 9a shows the level of the ground-truth
hierarchy that contains the repeated pattern. Panels (b–d)
show the level with the highest Rand index in the hierarchy
obtained with each method. In (b), (c) and (d), we use boxes
to highlight the differences between the grouping results and
the ground truth. We can see from (b) that our method suc-
cessfully finds all repeated instances and that the resulting
grouping is quite similar to the ground truth. The results of the
HACmethod, as shown in (c), contain four large groups with
no detected “desk–chair” patterns. Panel (d) shows the results
computed with the learning-based method, which cannot be
guaranteed to correctly find all repeated template instances.
There are many cases in which a chair is grouped with the
desk behind it. This results in many triplets, which are high-
lighted with red boxes.

4.4 Evaluation on SceneNN database

To evaluate our results on the SceneNN database, we con-
duct an online survey in terms of the plausibility of the
hierarchical structures computed by our method. We use
15 scenes from the SceneNN database for this study. The
pairs of one scene and the corresponding structure are pre-
sented to 30 participants that have no graphics or interior
design related background. Participants were asked about
the plausibility and reasonability of the hierarchical struc-
tures on a five-point Likert scale (1=not reasonable at all;
5=perfectly reasonable). The survey contains three types
of scenes: 8 office scenes, 6 meeting area/canteen scenes,
and 1 classroom scene. We consider a scene with multiple
student desk–chair pairs and a platform area as a class-
room. There is only one such classroom in the SceneNN
database. We found this survey takes 12.2 minutes to fin-
ish on average. Both the online survey and the ratings
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Fig. 9 Comparison of the groupings in the hierarchies of a the ground
truth, b our method, c the HAC method [28] and d the learning-based
method [16]. Objects shown in the same color are in the same group. In
the lower right corner of each panel, we show the Rand index computed
between the results of the corresponding method and the ground truth

given by the participants can be found in the supplementary
material.

Figure 10 shows the distribution of the ratings for each
type of scenes in (a)–(c) and that for all scenes in (d). The
average rating for our results is 3.678. Overall, there are
89.6%of the ratings given by participants are equal or greater
than 3, and 59.1% of the ratings are equal or greater than 4.
Scenes such as classroom andmeeting room/canteen area get
higher ratings as these scenes contain more subparts which
can be detected by repeated patterns, while some small office
rooms which are quite crowded and have no repeated pattern
detected get lower rating.

Fig. 10 Results of our survey for evaluating the plausibility of our
results on SceneNN database. We show the distribution of the ratings
for each type of scenes first and then show the distribution of ratings
for all scenes. The size of each bubble represents the percentage of the
corresponding rating. In each chart, the vertical line and the number
beside it show the average rating of the corresponding group of scenes

4.5 Timing and parameter setting

The time cost of our method can be divided into three com-
ponents. The first component is the time needed to create the
candidate templates. The time cost of this step is related to the
number of objects in the scene and the number of neighbors of
each object. In our experiment, it takes 0.48 milliseconds to
create candidate templates for eachnodeon average, and each
object has 2.78 neighbors on average. The average number
of candidate templates per scene is 35. The second compo-
nent is the time needed for selecting the optimal template
from among the candidates. To choose the optimal template,
we need to compute the coverage ratio and frequency for
each candidate. Thus, the time cost of this step is primarily
related to the number of subgraphs we need to check, Nsub,
and the number of permutations of the subgraph list during
the counting of nonoverlapping instances, Tsh. Therefore, the
time complexity is O(NsubTsh). In our experiment, Nsub is
561 for each scene on average, and we empirically set Tsh
to 200 for all data. The average value of this component of
the time cost is 0.11 seconds. The third component is the
time taken to apply the Ford–Fulkerson method. The time
complexity of this method is O(E f ), where E is the number
of edges in the flow network and f is the maximum flow.
If we denote the average number of neighbors of each node
by a and the average number of objects in each scene by n,
then from the way the network is constructed, we can see that
E ≤ ((n × a)/2 + n) and f ≤ (n × a/2). Thus, the upper
bound on the time complexity is O(n2a2). In our experi-
ment, the average number of objects per scene is 47, and the
average number of neighbors is 2.78, as mentioned above.
Each application of the Ford–Fulkerson method takes 0.021
seconds on average.

The relation matrix contains many small values (smaller
than 0.01). There are approximately 40 such values in the
example matrix shown in Fig. 3. These small values indi-
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cate that the corresponding relationships between objects are
very weak and that these objects can only barely be consid-
ered neighbors. To reduce the number of neighbors, we set a
threshold th to reject such weak relationships. For the Prince-
ton database, we set the threshold value to 0.1, and for the
SceneNN database, we find that a threshold of 0.05 yields
the best results.

5 Discussion and future work

In this paper, we propose a method of building hierarchies
for indoor scenes that contain repeated elements, such as
classrooms and libraries. In our method, the globally opti-
mal split is found by solving a minimum cost maximum
flow problem.We demonstrate that our method can correctly
find the repeated pattern that is most consistent with the
ground truth identified by a human analyst.We quantitatively
evaluate the results and show that our method outper-
forms state-of-the-art methods when applied to the Princeton
database.

Our work has some limitations. First, our method relies on
well-segmented and properly labeled input scenes because
the processes of both finding the repeated template and
computing the repeated pattern rely on the geometry and
the category labels of all objects. Second, when build-
ing the flow network, we ignore the relationships between
objects in the same layer. For example, in Fig. 4, the rela-
tionships between different chairs or different desks are
not considered when finding the repeated pattern. With
the current system, we focus only on finding the repeated
pattern and do not build a further hierarchy within the
repeated template. However, such an approach might be
needed for more complex scenes, such as the office scene in
Fig. 8d.

In the future, wewould like to improve our system in three
ways. First, we will explore how to automatically segment
raw scenes into meaningful parts and produce consistent cat-
egory labels for the scene elements. Second, we will also
explore a better way to construct the flow network to handle
more complex repeated patterns. Finally, we are interested
in combining our method with the learning-based method to
develop a new approach that can consider repeated patterns
when defining and learning a scene grammar.
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Fig. 11 An arbitrary loop in the cost network always has a positive-cost
value

A Proof that the flow network contains no
negative-cost cycles

The Floyd–Warshall method works only when the network
contains no negative-cost cycles. Therefore, we need to prove
here that the directed cost graph from which we find the
minimum path satisfies this condition. According to the
Ford–Fulkerson method, we iteratively repeat two steps: (1)
searching for an augmenting path in the cost network and (2)
updating the cost network (corresponding to the matrix w in
the algorithm) after adding the new augmenting path. The
cost network may have two types of edges: positive edges,
which have the same directions and cost values C(i, j) as
those of the corresponding original edges in the flow net-
work, and negative edges, which have the opposite directions
and negative-cost values −C(i, j). Consider a cycle in a
cost network, such as that shown in Fig. 11. Note that the
edges connected to the source or sink in a cycle are always
paired. Because we set the costs of all edges connected to
the source or sink to 1, the costs of such an edge pair, such
as (e(s, u1), e(u2, s)) or (e(v1, t), e(t, v2)), always cancel
to zero. Thus, the total cost of the cycle is Ci − C j , where
Ci is the cost of edge e(u1, v1) and −C j is the cost of edge
e(v2, u2). There is a negative-cost edge from v2 to u2,mean-
ing that the flow of edge e(u2, v2) has been used as part of
the flow solution. On the other hand, the positive-cost edge
e(u1, v1) indicates that the flow of this edge has not been
used. The edge e(u2, v2) is chosen earlier than e(u1, v1)
indicates that e(u2, v2) has a smaller weight, so we can infer
that C j ≤ Ci . Therefore, the cost of the cycle cannot be
negative.
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