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Abstract

High-quality 3D model abstraction is needed in many graphics or 3D vision tasks to improve the ren-
dering efficiency, increase transmission speed or reduce space occupation. Traditional simplification
algorithms for 3D models rely heavily on the mesh topology and ignore objects’ overall structure during
optimization. Learning-based methods are then proposed to form an end-to-end regression system for
abstraction. However, existing learning-based methods have difficulty representing shapes with hollow
or concave structures. We propose a self-supervised learning-based abstraction method for 3D meshes
to solve this problem. Our system predicts the positive and negative primitives, where positive primi-
tives are to match the inside part of the shape, and negative primitives represent the hollow region of
the shape. More specifically, the bool difference between positive primitives and the object is fed to
a network using Iteration Error Feedback (IEF) mechanism to predict the negative primitives, which
crop the positive primitives to create hollow or concave structures. In addition, we design a new sepa-
ration loss to prevent a negative primitive from overlapping the object too much. We evaluate the pro-
posed method on the ShapeNetCore dataset by Chamfer Distance (CD) and Intersection over Union
(IoU). The results show that our positive-negative abstraction schema outperforms the baselines.
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1 Introduction

The acquisition of 3D models has become more
accessible nowadays, which significantly promotes
the application of 3D data. Processing high-
quality 3D models is pretty time-consuming, so
how to convert models to be more light-weighted
and effective representations has become a critical
problem. One of the most popular ways of shape
abstraction is representing 3D objects with a set
of primitives, which can approximate the original
shape with simple shape elements while keeping
geometrical structures. Such abstraction can be

used for many tasks related to modeling, shape
analysis, reconstruction, and adaptive rendering.

3D shape abstraction methods mainly con-
tain two categories: geometrical optimization-
based methods and learning-based methods. The
mesh optimization algorithm [1] introduces edge-
collapse operation. Garland et al. propose a sim-
plification algorithm guided by Quadric Error
Metrics (QEM) [2], using the edge-collapse oper-
ation to reduce edges and faces. Later, many
varieties of the QEM-based method have been pro-
posed, but all of them lack the usage of global
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information. The co-abstraction method [3] hier-
archically generates a spectrum of abstractions
for each object and constructs different levels
of abstraction based on co-analysis. Both edge-
collapse and co-abstraction methods can generate
simplified meshes. However, the cost of opti-
mization limits the efficiency of these methods.
Learning-based abstraction methods [4, 5] per-
form better in speed, for they only predict a set
of primitives by neural networks to fit the shape.
Still, sometimes the primitives have difficulty
matching the original shape precisely because the
regression results lack accuracy with just one-
step prediction. Zhao et al. [6] further propose a
method to improve the results by iteratively refin-
ing the matching accuracy with the Iterative Error
Feedback (IEF) mechanism.

Although IEF-based network [6] improved the
result accuracy, we notice that it usually ignores
hollow regions of the shape and tends to cover such
regions with large cuboids. However, the hollow
regions may be crucial for structure and style rep-
resentation (for example, the hollow region under
the chair’s seat in Fig. 1). Therefore, considering
such a structure in the abstraction results is neces-
sary. A simple solution is to use more fine-grained
cuboids during abstraction, but controlling the
size and number of cuboids is not trivial during
the regression process.

In this paper, we follow the work [6] to use
cuboids as primitives for shape abstraction. To
deal with hollow regions that are hard to be
described by single cuboids, we propose to use
negative primitive during primitive prediction.
We call the primitives predicted by the previous
learning-based methods the positive primitives,
representing objects’ overall shape, and the prim-
itives remove the hollow region from the positive
ones negative. More specifically, after predicting
the positive primitives, we form a negative vol-
ume, which is the region that belongs to the
positive primitives but is out of the original shape,
and feed it to an IEF-based network to predict
negative primitives. In this way, our system can
crop positive primitives with negative primitives
to form better abstraction results. Finally, we
test our approach with public 3D model datasets.
The results show that our method improves the
abstraction results quantitatively and qualita-
tively compared with baseline cuboid abstraction
methods.

Our main contributions are as follows:

• We propose a positive-negative schema, using
negative primitives to crop assembly results and
form better local geometries of the shape.

• We designed a novel separation loss for negative
primitive prediction.

• We demonstrate that our approach performs
better than the baseline methods, whether mea-
sured by IoU (12%) or CD (23%).

2 Related Works

2.1 Learning-based 3D Shape
Abstraction Methods

Learning-based methods have shown effectiveness
for shape abstraction tasks. Such methods typi-
cally feed networks with unstructured 3D data and
estimate a list of primitives.

Voxel-based approaches convert 3D shapes to
discrete, regular grids as the neural network input.
Maturana et al. introduce VoxNet [7], the prior
voxel-based approaches, for object classification
and scene segmentation tasks. An unsupervised
learning framework [4] uses similar techniques to
extract features from voxel. Tulsiani et al. design
a novel loss function measuring the difference
between points sampled from abstraction results
and the origin 3D model for unsupervised learn-
ing. Based on this framework, Sun et al. develop
an adaptive hierarchical prediction module [5] to
choose primitives from several levels of details
according to a set of selection loss functions.
Paschalidou et al. use superquadrics as primitives
[8] to provide more expressive 3D scene parses.

Other approaches directly process unstruc-
tured data, such as point clouds or meshes. Yang
et al. [9] generate cuboid abstraction similar to
[4, 5] through jointly predicting cuboid allocation
as part segmentation and cuboids shapes. They
improve abstraction accuracy by enforcing the
consistency between segmentation and abstrac-
tion. Li et al. [10] introduce a Supervised Primitive
Fitting Network (SPFN), which integrates Point-
Net++ [11] for point cloud segmentation before
primitive fitting. SPFN adjusts the segmentation
strategy dynamically for a better-fitting result.
Some other segmentation models such as HPNet
[12], ParSeNet [13], CPFN [14] or PrimitiveNet
[15] introduces different methods to generate a set
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of essential surface patches. Guo et al. construct
3D line segments to match 2D ones from multi-
view images [16] to reconstruct polygonal surfaces
(mesh). Bridal et al. introduced an approach with-
out segmentation [17] to fit industrial products
from a point cloud. Primitives like planes, cylin-
ders, cones, and spheres commonly form industrial
products. This approach generates all kinds of
primitives simultaneously, provides several candi-
date results, and selects the best through voting.
Wu et al. [18] used primitives extracted by Globfit
[19] to combine objects, performing well on com-
plicated geometrical structures. However, such a
process relies on multiple pre-requests, restricting
its application to more datasets.

2.2 Applications on Stylization

The primitive representation of the 3D model can
be a tool for stylization. Liu et al. [20] present a 3D
stylization algorithm turning an input 3D model
into the style of a cube. They use the as-grid-as-
possible energy with ℓ1-regularization on rotated
surface normals to capture cubic-style sculptures.
Huang et al. [21] construct polycube maps by min-
imizing ℓ1-norm of the mesh normals, then using
the polycube maps for hexahedral re-meshing and
quadrangulation. The process of Physical Primi-
tive Decomposition (PPD) [22] tries to understand
an object through its components, considering
both the geometrical and physical behaviors of
the primitives. 3DStyleNet [23] predicts primitives
(ellipsoids) for model segmentation, the segmenta-
tion result is used to transfer geometric style from
the source to the target.

2.3 Positive and Negative Volume

Positive and negative volumes is a traditional
technique that can be applied to many 3D shape
processes.

Yumer et al. [3] propose the co-abstraction
method, which progressively generates a spectrum
of abstractions using positive and negative sub-
volumes. A positive sub-volume will be added
to the current abstraction result, and a nega-
tive sub-volume will be subtracted from it. The
sub-volumes can be arbitrary shapes that are
generated by an optimization process.

Chen et al. [24] propose an approach roughly
simulating the pipeline of human visual percep-
tion on indoor objects. They try a coarse-to-fine

scheme of abstraction and progressively approx-
imate objects with constructive solid geometry
(CSG) operations. The abstraction is represented
as a CSG tree, whose non-leaf node represents a
boolean operation of primitives, and the leaf node
represents a single primitive.

We use positive and negative volumes from
different aspects. The novelty of our method is
that instead of directly using the optimization pro-
cess to generate positive and negative volumes,
our approach applies neural networks to predict
them and use them for shape representation and
approximation.

3 Approach

3.1 Overview

We designed a positive-negative schema for prim-
itive prediction. The network predicts a set
of cuboids (positive primitives) first, which are
cropped by another group of cuboids (nega-
tive primitives); unlike the abstraction methods
that only combine primitives, our approach also
removes the volume occupied by negative primi-
tives to represent local concave details. The entire
pipeline of our method is shown in Fig. 1. We
design a positive prediction module to predict pos-
itive cuboids and a negative prediction module
for negative cuboids. We then apply the cropping
operation to the two types of cuboids and generate
the final results. The input of the positive pre-
diction module is the voxelized shape. The input
of the negative prediction module is the voxelized
difference representing the concave region of the
original shape. In practice, we perform a two-
stage training: the positive prediction module is
trained first without the negative prediction mod-
ule, then the negative prediction module is trained
with the positive prediction module fixed. The
cropping operation is a difference operation that
applies bool minus between two 3D objects.

3.2 Primitive Prediction

Both the positive and negative prediction modules
are primitive prediction model, which works in an
iterative manner inspired by [6], consisting of an
initial prediction stage and an iterative refinement
stage.
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Fig. 1 The pipeline of our method. First, we predict positive primitives, then negative primitives. Then we crop the positive
primitives with the negative ones. Each ⊖ indicates a difference operation (i.e. bool minus between two 3D objects). The
difference operation on the right side is the cropping operation.

The initial prediction stage takes a voxelized
object as input and uses a 3D-CNN as encoder,
then intermediate fully-connected (FC) layers,
and finally, FC layers as decoders to generate
the output (shown in Fig. 2). The output of this
network is a 10N dimensional vector containing
information on N cuboids. Each cuboid Ci is rep-
resented by transformations applied to a unit cube
as a vector ci = (si, ri, ti), where si ∈ R3 repre-
sents scale factors, ri ∈ R4 represents a rotation
(as a quaternion), ti ∈ R3 represents a translation.

The refinement stage works iteratively. In each
iteration, the network takes its last step result as
input (shown in Fig. 3). First, a shared encoder
encodes the input object with the previous result
to a feature vector. Then, intermediate layers and
decoders generate a 10N dimensional residual vec-
tor, which will be added to the previous result to
update the primitive configurations. In the first
iteration, the output of the initial prediction stage
is used as the last result.

The positive and negative prediction modules
use the same two-step network because essentially
both modules try to fit cuboids to a volume: the
positive prediction module aims to fit cuboids to
the inside region of the shape. In contrast, the neg-
ative prediction module seeks to find the concave
part located at the shape’s outside space. Because
of the different goals, the two prediction mod-
ules must have different input and loss definitions.
The positive prediction module takes the vox-
elized original object as the input. The negative
prediction module takes the voxelized difference
between positive primitives and the original object

as input. Fig. 1 shows an example of the vox-
elized difference. It fits this difference with cuboid
primitives.

encoder FC FC FC FC

64 64 64

output vector

voxelized object cuboids

Fig. 2 The initial prediction stage, shared by positive and
negative prediction modules.
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Fig. 3 The refinement stage, shared by positive and nega-
tive prediction modules. ⊕ indicates vector concatenation.
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3.3 Data Processing for Negative
Primitive Prediction

There are two steps of difference operations
related to negative primitives. First, we com-
pute the difference between the positive primitives
(high-level representation) and the original object
(low-level representation) to feed to the negative
primitive module. Second, we subtract the differ-
ence between the positive and negative primitives
to improve the local geometry. Both operations
can lead to noisy shapes because the positive prim-
itives, the original shapes, and the negative prim-
itives are not perfectly coincident. Therefore, we
apply a pre-process to adjust the input difference
volume during the former step and a post-process
to avoid less cropping (and over cropping) during
the latter step.

Pre-process

Directly feeding the difference between positive
primitives and the original object to the negative
prediction module may cause geometric problems.
Because the prediction module uses volumetric
representation for input, the negative primitives
may exceed the boundary of positive primitives,
resulting in perforations and bulges. We apply a
pre-process on the input to solve such a problem
by removing voxels near the object S. Assume
Vol(C+) denotes the volumetric representation
of all positive primitives C+, the difference is
V∆ = Vol(C+) − Vol(S). Before being fed into
the negative prediction module, any voxel v at the
boundary satisfying d(v, S) < θd (defined by Eq.
1) will be removed from V∆.

We use Signed Distance Field (SDF) to accel-
erate the computation of Euclidean distance, the
SDF used in the negative prediction module is also
computed in the pre-process. For each v ∈ V∆,
if C+ is nearer than S, we sample several points
close to v from C+, otherwise, we sample from S
but move them along the normal vector by θd.

Post-process

To avoid less cropping or over cropping (e.g.
perforations), we apply a post-process before cal-
culating the difference C+−C−. For each negative
primitive, if it overlaps the original object too
much or has a narrow gap with the object, we
try to make it tangent to the object by scaling it
slightly. All scales will not exceed the limit of θd.

We compute the scale factors by sampling points
on the surface of S and measuring the distance
from each sampled point to each negative primi-
tive. If any sampled point can be found inside a
primitive, we shrink it. We discard a primitive if
any sampled point inside it is far from its surface.
If there is no sampled point inside a primitive, we
expand it. After being scaled, a primitive will also
be discarded if it still overlaps too much with the
object or is far from the object.

Non-Maximum Suppression (NMS) is applied
to the remaining primitives to remove the redun-
dant ones. Less negative primitives produce a less
noisy shape after cropping and can be represented
by a smaller set of parameters.

3.4 Debris Removal

Debris removal is a process after the final crop-
ping operation. Sometimes one positive primitive
will be cropped into several fragments, some frag-
ments may be quite small compared with others.
If a fragment is too small to form any meaningful
structure, it visually appears as debris. By simply
removing fragments with a small surface area, we
can remove debris in most cases. For example, we
remove fragments whose surface area less than 1%
of the total, the results are illustrated in Fig. 4.

with debris debris removed

Fig. 4 Removing debris from the results (the threshold
of removal is set to 1% of the total surface area in our
experiments)
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3.5 Loss Functions for Primitive
Prediction

3.5.1 Loss for Initial Prediction Stage

We use fitting loss and symmetry loss to train the
initial prediction network as Zhao et al. [6]. Fit-
ting loss, inspired by the Chamfer Distance (CD),
penalizes the inconsistency between N predicted
primitives C =

⋃N
i=1 Ci and the input object S.

First, we define the distance between a point p and
a shape S:

d(p, S) =

{
0 if p ∈ S

minq∈S ∥p− q∥ else
(1)

Based on this definition we have L1
fit estimates

how much the input object covers the predicted
primitives and L2

fit estimates the reverse coverage
rate:

L1
fit(S,C) =

∑
p∈C

d(p, S)2

L2
fit(C, S) =

∑
p∈S

d(p, C)2
(2)

The bidirectional fitting loss prevents primi-
tives from over expanding or shrinking. Because of
the inherent symmetry of man-made objects, we
use symmetry loss to penalize the dis-symmetry
primitives:

Lsym(C) =

N∑
i=1

min
1≤j≤N

CD(Ci,mirror(Cj)) (3)

where CD denotes Chamfer Distance between
cuboids and the function mirror produces the
mirror operation according to the xOy plane.

Finally, the loss function used to train the
initial prediction network is defined as:

Linit = L1
fit + L2

fit + Lsym (4)

3.5.2 Loss for Refinement Stage

The refinement network uses the fitting loss and
a modified version of the symmetry loss. When it
tries to adjust a primitive Ci ⊆ C with its mirror
instance mirror(Ci) ⊆ C, it will always be penal-
ized by Lsym in Equation 3. Such a penalty may
disturb the refinement network’s optimization of

primitives. So a conditional symmetry loss is used
to solve this problem: [6]

Lcon-sym(C) =

N∑
i=1

f(Ci) min
1≤j≤N

CD(Ci,mirror(Cj))

f(Ci) =

{
1 if IoU(Ci,mirror(Ci)) ≤ α

0 else

(5)
Beside, a regularization loss is used to con-

strain the scaling, rotation or translation within
each iteration:

LR = Ls + Lr + Lt (6)

where Ls denotes scale constraint as

Ls =

N∑
i=1

(
max{ms(Ci)− θs, 0}

)2
(7)

The θs is the threshold of scaling. Lr and Lt

for rotation and translation constraint are defined
similarly with thresholds θr and θt. In practice we
set θs, θr, θt to 0.02, 0.02, 20◦.

The loss function used to train the refinement
network can be concluded as:

Lrefine = L1
fit + L2

fit + Lcon-sym + LR (8)

3.5.3 Separation Loss for Negative
Prediction Module

Generally, we perform the bool difference (i.e. sub-
traction) operation on positive primitives C+ and
negative primitives C− as C+ −C− to obtain the
final result. In practice, a negative primitive may
overlap the original object, cropping some of S by

mistake. To avoid over-cropping, C− =
⋃N−

i=1 C
−
i

is preferred to separate from the original object.
So we design a separation loss:

Lsep(S,C
−) =

N−∑
i=1

∑
p∈P (s)

(
θd−min

{
d(p, C−

i ), θd
})
(9)

where P (S) denotes uniformly sampled points in
intS (i.e. the interior of S). For a negative prim-
itive C−

i separating from S, the separation loss is
roughly zero. θd is the threshold same as section
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3.3. If C−
i overlaps S, some points in P (S) will

be closer to C−
i , then d(p, C−

i ) < θd, the Lsep

increases.
We use Lsep to train the negative prediction

module in both initialization (Linit) and refine-
ment (Lrefine) stage.

4 Experiments

4.1 Dataset

We use seven categories of models in the
ShapeNetCore dataset [25] (chairs, airplanes,
buses, benches, sofas, ships and lamps are used)
and animal models collected by Sun et al. [5] to
train and test our network. Two-thirds of models
of each category are used for training and others
for testing. Each model is normalized and with its
center aligned to (0, 0, 0), then voxelized to 323

voxels.

4.2 Training Details

Our network is implemented using PyTorch and
trained for 12 hours on a computer with Core i9-
10900X and RTX 3080 (10 GB memory). It takes
the network 0.12 seconds on average to predict
primitives for each object and 2.3 seconds to crop
the positive primitives. We use the Adam opti-
mizer to train the network, with a learning rate
of 0.001, β1 of 0.9, and β2 of 0.999. When train-
ing the refinement stage of a prediction module, it
inherits the weights of the encoder from the initial
prediction stage. The encoder’s learning rate is set
to 0.0001 (1/10 of other layers). Each module is
trained with a batch size of 32 for 150 epochs.

4.3 Evaluation and Comparison

To evaluate our approach, we compare our
method with works proposed by Tulsiani et al.
[4] (LEARNING for short) and Sun et al. [5]
(HIERARCHICAL for short). We also compare
our results with the result of Zhao et al. [6]. As
this work generates the positive primitives only,
we denote it as POSPRIM for short.

Qualitative evaluation

Fig. 5 illustrates some qualitative results of our
method. Our network shows the ability to general-
ize across different categories and different shapes.

The difference between a concave object and pos-
itive primitives is usually convex. So fitting the
difference is more straightforward than a concave,
complicated shape. For objects which are difficult
to fit with positive primitives, such as chairs hav-
ing unusual legs or backs, our approach usually
gives good abstraction through cropping. Other
examples like non-symmetric sofas, ships with
sails, or hollow buses also prove the effectiveness
of our approach.

Quantitative evaluation

To evaluate our method, we use two metrics to
measure the quality of abstraction results. Cham-
fer Distance (CD) is calculated by sampling points
from abstractions and objects and performs better
when measuring surface differences. Intersection
over Union (IoU) measures the difference of spa-
cial occupancy. With both metrics, we can com-
pare different methods more accurately. We show
the CD and IoU for different methods in Table 1
and Table 2. We can see from these tables that
our method outperforms the baselines.

We also show the results of different meth-
ods in Fig. 6. From the figure, we can see that
POSPRIM tends to expand primitives to cover the
surface of the original object, leaving huge differ-
ences between the concave region of the shapes
and primitives—for example, the lower part of
the chair example. With the IEF mechanism, our
approach reaches higher precision than LEARN-
ING. HIERARCHY uses more primitives to fit
the original object. Still, its mutex loss penaliz-
ing cuboid intersection may lead to unnecessary
sparsity (i.e., in the plane example, the cuboids
representing fuselage and tail are far from each
other), resulting in a good IoU with undesirable
visual quality.

4.4 Ablation Study

To prove the efficiency of different modules within
our network, we compare our network with the
following versions:

• Without pre-process: our network without
pre-process for negative prediction.

• Without post-process: our network without
post-process before cropping operation.

• Without Lsep: our network without the sepa-
ration loss.
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Fig. 5 Abstraction results of our method for each category in the dataset.

Table 1 Average IoU on the test set, higher is better.

IoU (%) Airplane Chair Bench Lamp Sofa Bus Ship Animal Average

LEARNING 47.49 47.12 38.45 32.78 62.52 65.26 48.52 23.54 45.71
HIERARCHY (Cadapt) 50.99 51.79 36.54 34.56 59.99 66.30 55.18 32.05 48.42
HIERARCHY (C1) 49.23 50.24 36.18 34.47 58.18 62.56 54.20 31.48 47.07

POSPRIM 23.21 33.21 30.16 21.65 29.06 25.57 25.28 21.56 26.21
OURS 56.31 58.18 40.98 36.19 66.95 79.49 59.24 46.32 55.54

• POSPRIM: The learning based abstraction
without considering negative primitives.

In Table. 3 and Table. 4 we show average CD
and IoU for our ablation study. Our method has
the highest IoU and the lowest CD values for all
classes, proving the advantage of our method’s
final design.

We test a network that does not perform pre-
processing on S − C+ (mentioned in section 3.3).
This network directly feeds the oversized volume
Vol(S − C+) to the negative prediction module.
From Fig. 7 we can see that the network without
pre-process produces oversize negative primitives,
so the bodies of the plane and the ship are over-
cropped. Over-cropping usually creates too many
perforations or holes in the abstraction result.

We also test a network which does not perform
post-process (mentioned in section 3.3) on nega-
tive primitives before cropping. The post-process
tries to make negative primitives tangent to the

original object. By doing so we reduce the possi-
bility of less-cropping. Fig. 8 shows abstractions
encountering less cropping because of undersized
negative primitives. Without the post-process, a
slice is reserved under the chair’s lags even if it
should be cropped. Also, half of the bench remains
solid, but the real bench is hollow.

We test a modified version of our network that
removes the separation loss Lsep. The separation
loss encourages a negative primitive to separate
from the original object, therefore limiting its size.
Without the separation loss, the negative primi-
tives tend to be oversize and envelop S−C+, then
discarded because of overlapping too much with
the original object. A lamp shown in Fig. 9 has
not been cropped because all negative primitives
are discarded.



Springer Nature 2021 LATEX template

Learning Shape Abstraction by Cropping Positive Cuboid Primitives with Negative Ones 9

Input OURS POSPRIM HIERARCHY LEARNING

Fig. 6 The original objects and abstraction results by our method, POSPRIM [6], HIERARCHY [5] and LEARNING [4]
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Table 2 Average CD on the test set (scaled by 1000), lower is better.

CD Airplane Chair Bench Lamp Sofa Bus Ship Aminal Average

LEARNING 21.25 28.02 29.93 36.98 23.76 19.99 22.93 31.20 26.75
HIERARCHY (Cadapt) 18.30 24.32 26.11 34.88 24.74 18.84 22.06 29.51 24.85
HIERARCHY (C1) 20.44 26.28 32.02 37.37 24.91 18.84 22.96 29.55 26.55

POSPRIM 16.46 24.54 23.72 30.65 20.87 18.54 21.49 28.14 23.05
OURS 14.61 19.61 19.03 22.97 18.28 16.24 15.78 25.14 18.96

Table 3 Average CD of each ablation study per category (scaled by 1000), lower is better.

CD Airplane Chair Bench Lamp Sofa Bus Ship Animal Average

Without pre-process 15.95 28.61 19.69 28.04 20.15 19.24 16.30 39.21 23.40
Without post-process 15.64 24.60 33.19 28.26 24.86 22.64 19.44 41.61 26.28

Without Lsep 22.99 20.63 19.40 27.99 20.12 19.21 15.86 32.98 22.40
POSPRIM 16.46 24.54 23.72 30.65 20.87 18.54 21.49 28.14 23.05
OURS 14.61 19.61 19.03 22.97 18.28 16.24 15.78 25.14 18.96

Fig. 7 The original object, POSPRIM, OURS and OURS
without pre-process

Fig. 8 The original object, POSPRIM, OURS and OURS
without post-process

5 Conclusion and Discussions

Shape abstraction can provide compact and useful
representations for 3D models. Although learning-
based methods are quite popular recently, previ-
ous works are not good at shapes with concave

Fig. 9 The original object, POSPRIM, OURS and OURS
without separation loss

regions. This paper introduces a positive-negative
schema for shape abstraction to deal with such
a problem. We build a network to predict posi-
tive and negative primitives, then crop the positive
primitives with negative ones. Compared with the
baseline methods, our approach can use fewer
primitives to describe 3D shapes more accurately.
The qualitative and quantitative (CD and IoU)
results tested on the ShapeNet dataset show that
our approach outperforms the baselines on this
test set. Furthermore, other networks can apply
our positive-negative schema, which may benefit
future research.

Our method has its limitations. First, the crop-
ping operation may split a positive primitive into
several segments, creating unnatural disconnected
components. Second, although the negative prim-
itives lead to better geometric accuracy, we only
use them once. In the future, we will explore how
to iteratively use the negative primitive and make
abstractions with different levels of detail. Finally,
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Table 4 Average IoU of each ablation study per category, higher is better.

IoU (%) Airplane Chair Bench Lamp Sofa Bus Ship Animal Average

Without pre-process 47.56 48.81 36.26 34.86 63.83 64.48 52.81 25.81 46.80
Without post-process 49.21 47.56 27.20 21.88 40.68 49.51 31.64 22.81 36.31

Without Lsep 42.67 46.97 37.76 31.71 63.11 64.39 50.21 14.10 43.87
POSPRIM 23.21 33.21 30.16 21.65 29.06 25.57 25.28 21.56 26.21
OURS 56.31 58.18 40.98 36.19 66.95 79.49 59.24 46.32 55.54

although cuboids can represent most objects well,
they are naturally unsuitable for curved shapes
like most lamps. How to consider other types of
primitives in our system is another direction that
is worth exploring.
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